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The influence of coexisting correlated and noncorrelated impurities on the critical behavior of the three-
dimensional Ising model is studied using Monte Carlo numerical simulations and finite-size scaling. The
amount of correlated and noncorrelated vacancies is modified and controlled during the simulations. The
long-range correlated �LRC� critical behavior is always found for any value of the concentration of correlated
vacancies. The smaller the amount of correlated vacancies the larger the system size needed to detect the LRC
universality class. This result explains why critical values measured in xerogel liquid-vapor experiments, where
the concentration of correlated vacancies is marginal, seem to correspond to a short-range correlated disorder.
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Structural or chemical defects may change the response of
many physical systems. For instance, inhomogeneities in
waveguides modify the propagation of classical and quantum
waves. Defects have been studied in connection with the
propagation of electrons through quasi-one-dimensional
wires �1� and optical fibers �2�. Phase transitions in thin films
�3� may be also influenced by disorder. For example, a slight
surface roughness changes electron transport through nano-
metric layers �4� and chemical disorder may induce a relaxor
behavior in ferroelectriclike perovskites �5�.

The effect produced by the disorder depends not just on
the geometry but also on the kind of distribution used to the
set up the randomness. When random disorder is introduced
on a conducting chain, electron states can become localized,
forcing the system to go through a metal-insulator transition
known as Anderson localization �6�. However, if the chain
has a correlated disorder, this localization may be minimized
�7�. The competition between correlated and noncorrelated
disorders has strong relevance in electronic transport through
DNA �8�, transmission through corrugated optic fibers, and
classical or quantum phase transitions. In this Brief Report
we will focus on the noncorrelated–long-correlated disorder
competition in a second-order phase transition.

The influence of quenched disorder on second-order
phase transitions is known since long time ago. Random �un-
correlated� disorder is relevant if the specific-heat critical
exponent of the pure system �without disorder� is positive
�9�. If the disorder is correlated, i.e., has a correlation func-
tion exhibiting an asymptotic power law with the distance, it
is relevant if �10�

d� − 2 � 0 � if � a � d , �1�

a� − 2 � 0 � if � a � d , �2�

with d being the dimension of the system, � being the cor-
relation length critical exponent of the pure system, and a
being the exponent of the power-law tail of the disorder cor-
relation function. The new correlation length critical expo-

nent of the long-range correlated �LRC� disordered system is
given by 2 /a �10�.

These theoretical predictions for a long-range correlated
disorder have been experimentally studied using helium 4He
superfluid transitions in porous gold �11�, Vycor, aerogels,
and xerogels �12–14�. The superfluid transition has a nega-
tive specific-heat critical exponent so it should be unaffected
by uncorrelated disorder. The experimental results show that
criticality was almost unchanged when using porous gold
and Vycor, while it was clearly affected when using aerogel
and xerogel �11,12�. First result is not surprising since porous
gold and Vycor have exponentially decaying correlation
functions beyond the typical size of the pore. The unexpected
result comes from aerogel and xerogel experiments. Aerogels
are fractals for several length scales up to a certain value that
depends on the aerogel density �15� beyond this length, the
structure becomes homogeneous, entering in an uncorrelated
regime. This uncorrelated disorder should not affect to the
superfluid phase transition at criticality. An explanation to
this apparent contradiction was given using Monte Carlo
simulations of the three-dimensional XY model confined in
aerogel-like structures �16�. By simulating aerogels with a
diffusion limited cluster-cluster aggregation algorithm
�17,18� authors showed that different long-range correlated
gelling clusters �16� with a�1.6 and backbone gelling clus-
ters with a�2.6 were physically well defined within the
whole aerogel structure, affecting to the XY model critical
behavior.

There are no many studies where both kind of disorders
�correlated and non correlated� coexist. Superfluid transitions
are not a good scenario to study this competition, but liquid-
vapor transitions, belonging to the Ising universality class
with a positive specific-heat exponent, should be affected by
both correlated and uncorrelated disorders. Liquid-vapor
phase transitions in silica aerogel have been studied for he-
lium and nitrogen �19,20�. The nitrogen critical exponent
measured for the order parameter �=0.35�0.05 is very
close to �=0.35 �21�, corresponding to the short-range cor-
related �SRC� disorder. Also, for helium, the value found �
=0.28�0.05 seems to be close to the short-range correlated
result.*manuel.marques@uam.es
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This competition has been also studied using numerical
simulations for the Ising model in a diffusion limited cluster-
cluster aggregation structure �22�. The value the authors find
for the correlation length critical exponent ��0.65 is close
to the short-range uncorrelated expected value ��0.68 �21�.

From a theoretical point of view, Weinrib and Halperin
studied a mixed disorder where the correlation function was
a sum of power-law terms with different a exponents. They
showed that the dominant term, defining criticality, was the
most correlated one, i.e., the one with smallest values of a
�10�. This result seems to be in contradiction with the data
coming form the liquid-vapor phase transitions in aerogels,
where short-range correlated disorder seems to disguise the
LRC universality class.

In this Brief Report we present a possible hypothesis to
explain this apparent contradiction based on the microscopic
structure of the aerogel used on previous studies. Paredes et
al. �22� determined that up to 97% of defects are due to
islands �short-range correlated disorder� while only 3% are
due to gelling clusters �long-range correlated disorder�. If the
total concentration of vacancies considered is c=0.2 �equal
to the one used in numerical simulations �22�� then the con-
centration of long-range correlated vacancies is almost neg-
ligible �cLRC=0.006�. In aerogel experiments the total con-
centration of impurities is even smaller c=0.05, implying
cLRC=0.0015. It is clear from these numbers that in previous
experiments and numerical simulations long-range correlated
critical behavior could be hidden by the uncorrelated disor-
der.

In order to analyze this hypothesis we must consider sys-
tems where the amount of LRC vacancies is not negligible
with respect to the SRC ones. We are going to study an Ising
model with interaction coupling J, diluted in predefined
structures where the amount of short-range and long-range
correlated disorders is easily controlled.

Apart from diffusion limited cluster-cluster aggregation,
used in �22�, other methods have been used to generate long-
range correlated disorder, namely, the thermal dilution �23�,
the Gaussian noise �24�, and the dilution of the entire sets of
lines �25,26�. The former diffusion limited cluster-cluster ag-
gregation has already mixed short-range and long-range cor-
related disorders but not in a controlled fashion.

In this Brief Report we will study a long-range correlated
disorder, with a=2, consisting on randomly oriented lines of
vacancies embedded in a three-dimensional Ising system
�25�. This kind of disorder has been experimentally observed
by means of x-ray and neutron critical scattering experiments
in systems �Ho and Tb� undergoing magnetic and structural
phase transitions �27–29�. To establish a long-range–short-
range disorder coexistence we also dilute the system ran-
domly at single sites. By implementing this dilution method,
the concentrations of correlated and uncorrelated vacancies
in the Ising system are easily controlled and modified.

The three-dimensional Ising model with concentration
cSRC of randomly distributed vacancies and a concentration
cLRC of long-range correlated lines of vacancies is studied at
different temperatures by Monte Carlo numerical simulations
using periodic boundary conditions. Logarithmic derivatives
of the moments of the magnetization Mn with respect to the
coupling J are calculated through energy-magnetization co-

variance �for a detailed description see Ref. �22��. Averaging
is performed over different realizations of the disorder. The
correlation length critical exponent � is calculated through
finite-size scaling �30�:

� � ln�Mn�
�J

	
J=Jc

� L1/�, �3�

with Jc being the critical coupling.
System sizes considered range from 1000 to 125 000

spins. The first moment of the magnetization M1 versus tem-
perature T is determined for each lateral size L, fixing the
concentration of uncorrelated cSRC and correlated vacancies
cLRC. First we use a discrete temperature Monte Carlo calcu-
lation with �T /J=0.02, and then, close to the maximum, we
perform a continuous histogram reweighing method �31�.
The calculation is repeated for 400 different realizations of
the disorder.

Figure 1 shows, in logarithmic scale, the value of the
maximum of logarithmic derivatives of the first magnetiza-
tion moment versus the size of the system for different val-
ues of the concentration of vacancies cSRC and cLRC. The total
amount of vacancies considered �cSRC+cLRC=0.4� is well

FIG. 1. Maximum of the logarithmic derivate of the first
magnetization moment versus size of the system in logarithmic
scale. The concentrations of SRC and LRC vacancies are �cSRC

=0.4, cLRC=0�, �cSRC=0.3, cLRC=0.1�, �cSRC=0.2, cLRC=0.2�,
�cSRC=0.1, cLRC=0.3�, and �cSRC=0, cLRC=0.4�. The thin line is
the expected SRC behavior �y= �1 /0.68�x+cteS�, while the thick
line is the expected LRC behavior �y=x+cteL�. The values cteS and
cteL are given by the largest lateral size considered.
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bellow the three-dimensional percolation value c�0.7 �21�.
Figure 1 also shows the two possible linear dependences cor-
responding to SRC �y= �1 /0.68�x+cteS� and LRC behavior
�y=x+cteL�, with slope given by the finite-size scaling
theory. The constants cteS and cteL are fixed by the value of
the maxima found for the largest lateral size considered.

For �cSRC=0.4, cLRC=0� the value �=0.68, correspond-
ing to the SRC disorder, clearly fits the data for every lattice
size. However, if a small amount of LRC disorder is included
�cSRC=0.3, cLRC=0.1� the situation changes and the ex-
pected LRC value �=1 fits our data for the largest lateral
sizes considered. As the amount of LRC disorder increases
�cSRC=0.2, cLRC=0.2�, �cSRC=0.1, cLRC=0.3�, and �cSRC
=0, cLRC=0.4� the fitting with �=1 holds for smaller sizes
of the system.

Figure 1 shows how a small amount of correlated vacan-
cies induces a LRC critical behavior. The smallest is the
amount of correlated vacancies considered the largest is the
correlation length needed to detect the LRC universality
class. Equivalently, from the experimental point view, the
smallest is the amount of correlated vacancies the closer we
need to get to the critical temperature to measure LRC be-
havior. To analyze these results in more detail we have com-
puted the effective correlation length critical exponent
�1 /�ef f� by considering the local �three points� slope at every
data point in Fig. 1. Results are shown in Fig. 2. �cSRC
=0.1, cLRC=0.3� and �cSRC=0, cLRC=0.4� show a LRC
critical exponent, while �cSRC=0.4, cLRC=0� belongs to the
SRC universality class. For �cSRC=0.3, cLRC=0.1� the situ-
ation is not so clear, but a logarithmic function �dotted line�
with asymptotic value 1 /�=1 at 1 /L→0 fits all our data. In
this particular case, where the amount of LRC disorder is
small �cLRC=0.1�, an estimated size L=200 is needed to ob-
tain a value ��1. The amount of LRC vacancies existing in
the diffusion limited cluster-cluster algorithm �cLRC=0.006�
or in real aerogel structures �cLRC=0.0015� is so small that a
crossover to a LRC universality class is very difficult to de-
tect.

To conclude, the competition between correlated and
noncorrelated impurities has been studied using the Monte
Carlo method in a three-dimensional Ising model where the
amount of correlated and noncorrelated vacancies is con-
trolled. Long-range correlated critical behavior if found for
nonzero values of the concentration of correlated vacancies.

If the amount of correlated vacancies considered is small the
size of the system needed to detect the LRC universality
class turns to be extremely large for numerical simulations.
This result explains why, in contradiction with the LRC
value expected from theoretical predictions, short-range cor-
related critical exponents are found in previous calculations
based on diffusion limited cluster-cluster aggregation algo-
rithms and in helium and nitrogen liquid-vapor experiments
where the amount of LRC vacancies is negligible. Tailored
experiments in disordered systems where the amount of LRC
vacancies is controllable, for instance by inducing local di-
pole dislocations, could help us to better understand the key
role played by each type of disorder.
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